

Contents

1. Summary
2. Engagement Overview
3. Risk Classification
4. Vulnerability Summary
5. Findings
6. Disclaimer

Summary

About 0xWeiss
0xWeiss is an independent smart contract security researcher, Co-Founder of Enigma
Dark and SR at Spearbit. He also serves as an in-house security in Tapioca DAO and
Ambit Finance.

Fantasy Top v1.1
Fantasy is a Trading Card Game in which players collect cards featuring crypto
influencers to compete and earn ETH, BLAST, more cards, and FAN Points.

Engagement Overview

The following repositories were reviewed at the specified commits:

Repository Commit

fantasy-top/fantasy-core-audit 28fb2b10b629ff5474eec417c693fce7cfaf4261

breakline

Over the course of 4 days, 0xWeiss conducted a security review of the Fantasy v1.1
protocol via the Hyacinth platform.

Risk Classification

Severity Description

High Exploitable, causing loss or manipulation of assets or data.

Medium Risk of future exploits that may or may not impact the smart contract
execution.

Low Minor code errors that may or may not impact the smart contract
execution.

Vulnerability Summary

Severity Count Fixed Acknowledged

High 1 1 0

Medium 2 2 0

Low 4 3 1

Informational 1 1 0

breakline

Findings

Index Issue Title Status

H-01 buy orders can be executed with revoked approvals Fixed

M-01 Whitelist not checked in setCollectionForMintConfig and
newMintConfig

Fixed

M-02 Users can burn from non-whitelisted collections Fixed

L-01 batchBuy allows to send more ether than required but does
not refund Acknowledged

L-02 Missing buy and burn event emission Fixed

L-03 Token whitelist is not being checked Fixed

L-04 Missing check for array lengths Fixed

I-01 Informational recopilation Fixed

breakline

Detailed Findings

High Risk

H-01 - buy orders can be executed with revoked approvals

Severity: High Risk

Technical Details:

Inside the buy function, if buyers decide to set burnAfterPurchase as true, the NFT will
be burned from the owner.

 if (burnAfterPurchase) {
 executionDelegate.burnFantasyCard(sellOrder.collection,
sellOrder.tokenId);
 } else {
 _executeTokenTransfer(sellOrder.collection, sellOrder.trader,
msg.sender, sellOrder.tokenId);
 }

There is a logical problem where it shows a flaw in the usage of the approval system. The
seller can revoke authorization of sell orders by setting revokedApproval[from] == false
in the execution delegate contract. Which in v1, it reverted if someone tried to buy when
that mapping returned true.

When introducing the burn method, if the buyer decides to burn, even if the approval is
revoked, they will still burn the NFT from the user as it is not checked for approvals

Impact:

Buy orders can be executed with revoked approvals

Recommendation:

Add a revokedApproval when burning. You can add it directly in the ExecutionDelegate
contract so it gets always checked:

 function burnFantasyCard(address collection, uint256 tokenId) external
whenNotPaused approvedContract {
+ require(revokedApproval[from] == false, "User has revoked approval");
 IFantasyCards(collection).burn(tokenId);
 }

or if the protocol was expecting to use such functionality often themselves on behalf of the
user, they could call the mapping from the ExecutionDelegate directly in the buy
function.

Developer Response:

Fixed at commit: https://github.com/fantasy-top/fantasy-core-audit/pull/44

breakline

Medium Risk

M-01 - Whitelist not checked in setCollectionForMintConfig and
newMintConfig

Severity: Medium Risk

Technical Details:

The setCollectionForMintConfig and

 function setCollectionForMintConfig(uint256 mintConfigId, address
collection) public onlyRole(MINT_CONFIG_MASTER) {
 require(mintConfigId < mintConfigIdCounter, "Invalid mintConfigId");
 require(collection != address(0), "Collection address cannot the
zero address");

 MintConfig storage config = mintConfigs[mintConfigId];
 require(!config.cancelled, "Mint config cancelled");
 config.collection = collection;

 emit CollectionUpdatedForMintConfig(mintConfigId, collection);
 }

the newMintConfig functions do not check that a collection is actually whitelisted:

 if (requiresWhitelist) {
 require(merkleRoot != 0, "missing merkleRoot");
 }

 MintConfig storage config = mintConfigs[mintConfigIdCounter];
 config.collection = collection;

Impact:

Whitelist not checked in setCollectionForMintConfig and newMintConfig

Recommendation:

Check that the collection being used is whitelisted:

require(whitelistedCollections[collection], "Collection is not whitelisted");

Developer Response:

Fixed at commit: https://github.com/fantasy-top/fantasy-core-audit/pull/43/files

M-02 - Users can burn from non-whitelisted collections

Severity: Medium Risk

Technical Details:

sellOrder.collection is not checked against the whitelist in the case the buyer sets
burnAfterPurchase as true. it is just checked inside the _executeTokenTransfer

function:

 if (burnAfterPurchase) {
 executionDelegate.burnFantasyCard(sellOrder.collection,
sellOrder.tokenId);
 } else {
 _executeTokenTransfer(sellOrder.collection, sellOrder.trader,
msg.sender, sellOrder.tokenId);
 }

Impact:

Users can burn from non-whitelisted collections

Recommendation:

Check the whitelist status of the collection also when burning.

Developer Response:

Fixed at commit: https://github.com/fantasy-top/fantasy-core-audit/pull/42/files

breakline

Low Risk

L-01 - batchBuy allows to send more ether than required but does
not refund

Severity: Low Risk

Technical Details:

batchBuy allows to send more ether than required but does not refund:

 if (sellOrders[i].paymentToken == address(0)) {
 totalEthSpending += sellOrders[i].price;
 require(totalEthSpending <= msg.value, "Insufficient ETH
sent");
 }

Impact:

When more ether than required is sent, it will be lost

Recommendation:

Add a refund mechanism at the end of the function

Developer Response:

Acknowledged

L-02 - Missing buy and burn event emission

Severity: Low Risk

Technical Details:

When the standard buy function gets called, there is no distinction between the event
emitted when the token gets burned vs when it doesn't, it always emits the following event:
emit Buy(msg.sender, sellOrder, sellOrderHash);

In the batch buy function, it does make a distinction whether the user burns or not by
emitting BatchBuyAndBurn :

 if (burnAfterPurchase) {
 emit BatchBuyAndBurn(msg.sender, sellOrders, sellerSignatures);
 } else {
 emit BatchBuy(msg.sender, sellOrders, sellerSignatures);
 }

Impact:

State is not tracked properly

Recommendation:

Add a BuyAndBurn event on the standard buy function

 if (burnAfterPurchase) {
 executionDelegate.burnFantasyCard(sellOrder.collection,
sellOrder.tokenId);
+ emit BuyAndBurn(msg.sender, sellOrder, sellOrderHash);
 } else {
 _executeTokenTransfer(sellOrder.collection, sellOrder.trader,
msg.sender, sellOrder.tokenId);
 }
 emit Buy(msg.sender, sellOrder, sellOrderHash);
 }

Developer Response: TODO

L-03 - Token whitelist is not being checked

Severity: Low Risk

Technical Details:

The setMinimumPricePerPaymentToken does not check that the paymentToken is
whitelisted:

 function setMinimumPricePerPaymentToken(address paymentToken, uint256
minimuPrice) public onlyOwner {
 _setMinimumPricePerPaymentToken(paymentToken, minimuPrice);
 }

while it should check the whitelist status of the token:
whitelistedPaymentTokens[_paymentToken]

Impact:

State can be modified for un-whitelisted tokens

Recommendation:

Add the whitelistedPaymentTokens check to the function

Developer Response:

Fixed at commit: https://github.com/fantasy-top/fantasy-core-audit/pull/39

L-04 - Missing check for array lengths

Severity: Low Risk

Technical Details:

In the function batchMintCardsTo the check to make sure that merkleProofs and
recipients` have the same length is missing:

function batchMintCardsTo(uint256 configId, bytes32[][] calldata
merkleProofs, uint256 maxPrice, address[] calldata recipients) public
payable nonReentrant onlyEOA onlyRole(MINT_CONFIG_MASTER) {
 for (uint i = 0; i < recipients.length; i++) {
 _mintCardsTo(configId, merkleProofs[i], maxPrice,
recipients[i]);
 }
 }

Impact:

Missing important check

Recommendation:

Check that the length between merkleProofs and recipients is the same

Developer Response:

breakline

FIxed at commit: a7377dc37d6e632334b41c22deeec15c77887ed0

Informational

I-01 - Informational recopilation

Severity: Informational

Technical Details:

The NATSPEC in the batchMintCardsTo function has a typo, should be to mint
instead of to mints : * @notice Admin function to mints packs based on the
specified mint configuration to multiple recipients .

There could be a standardized internal _mint function to be called inside
batchMintCardsTo and mint as both function do basically the same. The only

difference is the to parameter, which could be set to msg.sender in the mint
function

The batchBurn does an unnecessary loop, you could burn just after the check:

 for (uint i = 0; i < tokenIds.length; i++) {
 require(IFantasyCards(collection).ownerOf(tokenIds[i]) ==
msg.sender, "caller does not own one of the tokens");
+ executionDelegate.burnFantasyCard(address(collection),
tokenIds[i]);
 }

- for (uint i = 0; i < tokenIds.length; i++) {
- executionDelegate.burnFantasyCard(address(collection),
tokenIds[i]);
- }

Impact:

Informational issues

Recommendation:

Fix the above issues accordingly

Developer Response:

Fixed at commit: https://github.com/fantasy-top/fantasy-core-audit/pull/41/files

breakline

Disclaimer

This report is not, nor should be considered, an “endorsement” or “disapproval” of any
particular project or team. This report is not, nor should be considered, an indication of the
economics or value of any “product” or “asset” created by any team or project that
contracts 0xWeiss to perform a security assessment. This report does not provide any
warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,
nor do they provide any indication of the technologies proprietors, business, business
model or legal compliance.

This report should not be used in any way to make decisions around investment or
involvement with any particular project. This report in no way provides investment advice,
nor should be leveraged as investment advice of any sort. This report represents an
extensive assessing process intending to help our customers increase the quality of their
code while reducing the high level of risk presented by cryptographic tokens and
blockchain technology. Blockchain technology and cryptographic assets present a high
level of ongoing risk.

My position is that each company and individual are responsible for their own due
diligence and continuous security. My goal is to help reduce the attack vectors and the
high level of variance associated with utilizing new and consistently changing
technologies, and in no way claims any guarantee of security or functionality of the
technology we agree to analyze. Therefore, I do not guarantee the explicit security of the
audited smart contract, regardless of the verdict.

