
SECURITY REVIEW GOLDILOCKS

Summary

Auditors: 0xWeiss

Marketplace: Hyacinth

Client: Goldilocks

Report Delivered: September 2024

Protocol Summary

Protocol Name Goldilocks
Language Solidity
Codebase https://github.com/ArrowDFMs/arrow-trading-booster
Commit c1317dcc81ca4f3bfd7b12ec0f61fb6167a8ba74

Previous Audits No

About 0xWeiss

Marc Weiss, or 0xWeiss, is an independent smart contract security researcher. Having found

numerous security vulnerabilities in various protocols, he does his best to contribute to the

blockchain ecosystem and its protocols by putting time and effort into security research &

reviews. Reach out on Twitter @0xWeisss or on Telegram @0xWeiss.

Audit Summary

Arrow engaged 0xWeiss to review the security of its distributor contract. At the end, there

were 7 issues identified. All findings have been recorded in the following report. Notice that

the examined smart contracts are not resistant to internal exploit. For a detailed

understanding of risk severity, source code vulnerability, and potential attack vectors, refer

to the complete audit report below.

https://twitter.com/0xWeisss
https://t.me/xweisssssss

SECURITY REVIEW GOLDILOCKS

Summary

Auditors: 0xWeiss

Marketplace: Hyancinth

Client: Goldilocks

Report Delivered: October 2024

Protocol Summary

Protocol Name Goldilocks
Language Solidity
Codebase https://github.com/0xgeeb/goldilocks-core
Commit a912b1b0efcff1bb43704a0b13ae3bca0781290e

Previous Audits Yes, 2

About 0xWeiss

Marc Weiss, or 0xWeiss, is an independent smart contract security researcher. Having found

numerous security vulnerabilities in various protocols, he does his best to contribute to the

blockchain ecosystem and its protocols by putting time and effort into security research &

reviews. Reach out on Twitter @0xWeisss or on Telegram @0xWeiss.

Audit Summary

Goldilocks engaged 0xWeiss through Hyacinth Audits to review the security of its token

contract. 0xWeiss reviewed the source code in scope. At the end, there were 7 issues

identified. All findings have been recorded in the following report. Notice that the examined

smart contracts are not resistant to internal exploitation. For a detailed understanding of risk

severity, source code vulnerability, and potential attack vectors, refer to the complete audit

report below.

https://twitter.com/0xWeisss
https://t.me/xweisssssss

Vulnerability Summary

Audit Scope

ID File Path

GOLD src/core/**.sol

Severity Classification

Severity Total Pending Acknowledged Par. resolved Resolved
HIGH 1 0 1 0 0

MEDIUM 3 0 2 0 1
LOW 3 0 1 0 2
INF 0 0 0 0 0

Severity Classification
HIGH Exploitable, causing loss/manipulation of assets or data.

MEDIUM Risk of future exploits that may or may not impact the smart contract execution.
LOW Minor code errors that may or may not impact the smart contract execution.
INF No impact issues. Code improvement

Methodology

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.

● Assessing the codebase to ensure compliance with current best practices and industry

standards.

● Ensuring contract logic meets the specifications and intentions of the client.

● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

● Thorough line-by-line manual review of the entire codebase by industry experts.

Findings and Resolutions

ID Category Severity Status

GOLD-1 Logical error HIGH Acknowledged

GOLD-2 Logical error MEDIUM Acknowledged

GOLD-3 Logical error MEDIUM Resolved

GOLD-4 Architectural error MEDIUM Acknowledged

GOLD-5 Logical error LOW Resolved

GOLD-6 Logical error LOW Resolved

GOLD-7 Logical error LOW Acknowledged

GOLD-1 |Loan data is never deleted when fully repaid or
liquidated which will DOS new borrow orders for users

Severity Category Status
HIGH Logical error Acknowledged

Description of the issue

Users have a maximum amount of loans they can open so that when looping through all of
them via `_lookupLoan` there can't be a DOS for having too many loans open.

uint256 userLoansLength = loans[msg.sender].length;

if(userLoansLength == MAX_LOANS) revert TooManyLoans();

Every time a user borrows, the number of loans increments by 1:

>> loans[msg.sender].push(loan);

IERC721(collateralNFT).transferFrom(msg.sender, address(this), collateralNFTId);

The problem is that this loan is never removed from the array when it has been fully repaid
or liquidated, DOSing the user forever from opening new loans. User boosts will be locked
without them being able to borrow making the boosts un-usable

Recommendation

Pop or delete the Loan struct for every index when it is fully repaid or liquidated.

Resolution

Acknowledged, we are okay with a 25 loan limit per address.

GOLD-2 |Foot-gun architecture when re-boosting

Severity Category Status
MEDIUM Logical error Acknowledged

Description of the issue

The following issue arises from the fact that you can boost multiple times different NFTs.

function boost(

address[] calldata partnerNFTs,

uint256[] calldata partnerNFTIds

) external {

uint256 partnerNFTsLength = partnerNFTs.length;

for(uint256 i; i < partnerNFTsLength;) {

if(partnerNFTBoosts[partnerNFTs[i]] == 0) revert InvalidBoostNFT();

unchecked {

++i; }}

if(partnerNFTsLength != partnerNFTIds.length) revert ArrayMismatch();

boosts[msg.sender] = _buildBoost(partnerNFTs, partnerNFTIds);

These boosts are always packed together and have an expiry date which is ` expiry:
block.timestamp + boostLockDuration,`.

There no matter how much NFTs you boost, you will have them on the same boost with the
same expiry. This means that the architecture is prone to self-DOS by boosting or
re-boosting NFTs that are already expired but not withdrawn, as this would re-boost them
and increase the expiry once again, not allowing to withdraw the NFT until it is expired.

Recommendation

Either do not automatically re-boost expired boosts when a user tries to boost again.
Because if they were to boost again they can always specify such NFT again, or make it
very clear in NATSPEC and disclose to the community such that if they re-boost and the
previous boost is not withdrawn they will re-lock the old boost too

Resolution

Acknowledged

GOLD-3 |NFT boosts changes are not realized in current
boosts

Severity Category Status
MEDIUM Logical error Resolved

Description of the issue

When users boost they do it by using the current value of the NFT: `partnerNFTBoosts`
which it is added to the boost magnitude `magnitude`:

for(uint256 i; i < nftsLength;) {

magnitude += partnerNFTBoosts[nfts[i]];

unchecked {

++i;

}

This boost is then locked for `boostLockDuration` at that specific magnitude.

In the scenario that the value of the NFT is changed `partnerNFTBoosts[nfts[i]]`, then any
locks of such NFT would be affected because they would retain the old values for the rest of
the boost.

Recommendation

Given that the fix would require a quite complex architectural change, do not change the
value of an NFT while boosts for that certain NFT are locked.

Resolution

While the functionality to do so is there, to not trigger this issue, the developer team has
specified that no values will be changed while boosts are active to not cause this problem.

GOLD-4 |All NFTs from the same collection are valued at the
same fair value

Severity Category Status
MEDIUM Architectural error Acknowledged

Description of the issue

Currently there is a `nftFairValues` mapping that stores what would be the fair value for an
NFT collection. The problem is that all the NFTs from such collections are valued at the
same fair value while rarities inside the same collection are completely different. So a 1 of 1
NFT which might be valued at 50k USD, would have the same "fair value" as an NFT from
the floor price of the collection priced at 1k USD.

All NFTs from the same collection are valued at the same fair value which will miss-price rare
NFTs and affect the borrowable amount of a user.

Recommendation

Do not only assign a fair value per collection, but also have the option to assign a fair value
per Id.

Resolution

Goldilend intentionally treats all NFT's from within a single collection equivalently, and
ignores e.g. rarity differences. The fair value for a collection represents the maximum that
Goldilend is willing to lend out for any specific NFT within the collection.

GOLD-(5-7) |List of Low issues

Severity Category
LOW Compilation

GOLD 5 - Total valuation to nft fair value ratio can be broken

Description of the issue

The function ` function initializeBeras()` initializes nft fair values and enables borrowing.

function initializeBeras(

uint256 _totalValuation,

address[] calldata _nfts,

uint256[] calldata _nftFairValues

) external {

if(msg.sender != multisig) revert NotMultisig();

if(berasInitialized) revert AlreadyInitialized();

berasInitialized = true;

totalValuation = _totalValuation;

uint256 nftFairValuesLength = _nftFairValues.length;

for(uint256 i; i < nftFairValuesLength;) {

nftFairValues[_nfts[i]] = _nftFairValues[i];

unchecked {

++i;}}

borrowingActive = true; }

`nftFairValues` should represent 1/1000's of the `totalValuation`, so they should sum to
1000. There is no hard requirement for this in the code, which would allow this "invariant" to
be broken.

Recommendation

Specifically check that this scenario does not happen when calling `initializeBeras()` and the
ratio is kept

Resolution

Fixed at PR

https://github.com/0xgeeb/goldilocks-core/commit/dcba9b477a394b1038828345f6eceac7f03bfe2b

GOLD 6 - Incorrect state tracked for initialization variables

Description of the issue

The `initializeParameters` function does not emit any event when initializing variables that
already have events declared, tracking the state incorrectly:

function initializeParameters(

uint256 _multisigShare,

uint256 _apdaoShare,

uint256 _minDuration,

uint256 _maxDuration,

uint256 _protocolInterestRate,

uint256 _slope,

uint256 _annualPrgEmissions,

uint256 _boostLockDuration) external {

if(msg.sender != multisig) revert NotMultisig();

if(parametersInitialized) revert AlreadyInitialized();

parametersInitialized = true;

multisigShare = _multisigShare;

apdaoShare = _apdaoShare;

minDuration = _minDuration;

maxDuration = _maxDuration;

protocolInterestRate = _protocolInterestRate;

slope = _slope;

annualPrgEmissions = _annualPrgEmissions;

boostLockDuration = _boostLockDuration; }

Some examples are:

`NewProtocolInterestRate`, `NewShareRates`, `NewSlope`, `NewDurations`

Recommendation

Emit the events also in the `initializeParameters` function

Resolution

Fixed at PR

https://github.com/0xgeeb/goldilocks-core/commit/8097567e7f9fc5129ba81b6fd212b788700ce7c5

GOLD 7 - Donations can backfire and cause minted lock amount dilutions

Description of the issue

Locking iBGT is very similar to the `deposit()` function in vaults and lending protocols. Here,
the first depositor can also be diluted to mint 0 tokens by depositing less than the donation
amount.

While Goldilocks does the right thing by not checking `balanceOf()` to check `poolSize`, they
included a `donate()` function in a prior audit that allows to increase `poolSize` without
increasing the total supply.

function lock(uint256 amount) external {

uint256 mintAmount = _GiBGTMintAmount(amount);

poolSize += amount;

SafeTransferLib.safeTransferFrom(ibgt, msg.sender, address(this), amount);

_refreshiBGT(amount);

_mint(msg.sender, mintAmount);

emit iBGTLock(msg.sender, amount);

}

This allows for a rounding issue to happen:

- lock 1 wei, totalsupply = 1 wei, _poolSize = 1 wei

- donate 1000e6, totalsupply = 1 wei, _poolSize = 1000e6 + 1 wei

- lock < 1000e6 will mint 0 tokens due to rounding

Donations are permissioned, which makes this issue very low likelihood.

Recommendation

Be very careful when donations happen and try to always use a private rpc to execute such
a function to not allow front/back-running.

Resolution

Acknowledged, do not currently use a private RPC but will for this donate function.

DISCLAIMER

This report is not, nor should be considered, an “endorsement” or “disapproval” of any

particular project or team. This report is not, nor should be considered, an indication of the

economics or value of any “product” or “asset” created by any team or project that

contracts 0xWeiss to perform a security assessment. This report does not provide any

warranty or guarantee regarding the absolute bug-free nature of the technology analyzed,

nor do they provide any indication of the technologies proprietors, business, business model

or legal compliance.

This report should not be used in any way to make decisions around investment or

involvement with any particular project. This report in no way provides investment advice,

nor should be leveraged as investment advice of any sort. This report represents an

extensive assessing process intending to help our customers increase the quality of their

code while reducing the high level of risk presented by cryptographic tokens and blockchain

technology. Blockchain technology and cryptographic assets present a high level of ongoing

risk.

My position is that each company and individual are responsible for their own due diligence

and continuous security. My goal is to help reduce the attack vectors and the high level of

variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

Therefore, I do not guarantee the explicit security of the audited smart contract, regardless

of the verdict.

