
0xWeiss 1

0xWeiss 2

Summary

Auditors: 0xWeiss (Marc Weiss)

Client: Fantasy

Report Delivered: 21 April, 2024

About 0xWeiss

0xWeiss is an independent security researcher. In-house auditor/security engineer in
Ambit Finance and Tapioca DAO. Security Researcher at Paladin Blockchain
Security and ASR at Spearbit DAO. Reach out on Twitter @0xWeisss .

Protocol Summary

Fantasy is a Trading Card Game in which players collect cards featuring crypto

influencers to compete and earn ETH, BLAST, more cards, and FAN Points.

Protocol Name Fantasy

Language Solidity

Codebase https://github.com/fantasy-top/fantasy-core-audit

Commit 4cc424eb49f036c94656dd1c916be4cf891a5c1b

Previous Audits Cantina

https://twitter.com/ambitfinance
https://twitter.com/tapioca_dao
https://twitter.com/0xWeisss

0xWeiss 3

Audit Summary

Fantasy engaged 0xWeiss through Hyacinth to review the security of its codebase.

A 2 week time-boxed security assesment was performed.

At the end, 9 issues were identified.

All findings have been recorded in the following report. Notice that the examined smart

contracts are not resistant to internal exploit.

For a detailed understanding of risk severity, source code vulnerability, and potential attack

vectors, refer to the complete audit report below.

Vulnerability Summary

Severity Classification

Severity Total Pending Acknowledged Par. resolved Resolved

HIGH 0 0 0 0 0

MEDIUM 3 0 2 0 1

LOW 6 0 5 0 1

INF 0 0 0 0 0

Severity Classification

HIGH Exploitable, causing loss/manipulation of assets or data.

MEDIUM Risk of future exploits that may or may not impact the smart contract execution.

LOW Minor code errors that may or may not impact the smart contract execution.

INF No impact issues. Code improvement

0xWeiss 4

Methodology

The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.

● Assessing the codebase to ensure compliance with current best practices and industry

standards.

● Ensuring contract logic meets the specifications and intentions of the client.

● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

● Thorough line-by-line manual review of the entire codebase by industry experts.

0xWeiss 5

Audit Scope

ID File Path

ED src/ExecutionDelegate.sol

FC src/FantasyCards.sol

MINT src/Minter.sol

OL src/libraries/OrderLib.sol

VRG src/VRGDA/VRGDA.sol

LVRG src/VRGDA/LinearVRGDA.sol

WM src/VRGDA/wadMath.sol

EXC src/Exchange.sol

0xWeiss 6

Findings and Resolutions

ID Category Severity Status

EXC-M1 User Loss MEDIUM Resolved

EXC -M2 User Loss MEDIUM Acknowledged

EXC -M3 User Loss MEDIUM Acknowledged

MINT-L1 Logical error LOW Acknowledged

MINT-L2 Logical error LOW Acknowledged

MINT-L3 Logical error LOW Acknowledged

MINT-L4 DOS LOW Acknowledged

EXEC-L1 Input Validation LOW Resolved

GLOBAL-L2 Un-used code LOW Acknowledged

0xWeiss 7

[EXC-M1] Orders can be executed on expiration

Severity Category Status

MEDIUM User Loss Resolved

Description

When buying or selling Fantasy cards, there is the following check that requires that
the order is not expired:

require(buyOrder.expirationTime >= block.timestamp, "order expired");

The problem is that usually when speaking about any type of orders in the defi space, when an order

reaches its expiration time, the order is already expired. Therefore, you should not be able to

execute buy() or sell() orders when the expirationTime has just been reached.

Recommendation

Update the require statements so that it does not allow to execute buy and sell
orders just at expiration:

function _buy(OrderLib.Order calldata sellOrder, bytes calldata sellerSign
ature) internal {
 require(sellOrder.side == OrderLib.Side.Sell, "order must be a sell
");
- require(sellOrder.expirationTime >= block.timestamp, "order expir
ed");
+ require(sellOrder.expirationTime > block.timestamp, "order expire
d");
 require(sellOrder.trader != address(0), "order trader is 0");

function sell(OrderLib.Order calldata buyOrder,bytes calldata buyerSignatu
re,uint256 tokenId,bytes32[] calldata merkleProof) public payable nonReent
rant onlyEOA {
 require(buyOrder.paymentToken != address(0), "payment token can not
be ETH for buy order");
 require(buyOrder.side == OrderLib.Side.Buy, "order must be a buy");
- require(buyOrder.expirationTime >= block.timestamp, "order expire
d");
+ require(buyOrder.expirationTime > block.timestamp, "order expired
");

Resolution
Fixed

https://github.com/fantasy-top/fantasy-core-audit/pull/28

0xWeiss 8

[EXC-M2] Malicious seller can grief order

executions

Severity Category Status

MEDIUM User Loss Acknowledged

Description

Currently, on the Exchange.sol contract, a seller signs their message with the

corresponding data that the buyer will use to execute the buy() order:

 function buy(
 OrderLib.Order calldata sellOrder,
 bytes calldata sellerSignature
) public payable nonReentrant onlyEOA {
 _buy(sellOrder, sellerSignature);
 }

Then, it checks that the actual seller specified, is the same seller that signed the
message: require(sellOrderSigner == sellOrder.trader, "invalid
signature");

Finally, the Fantasy card is transferred from the seller to the buyer through

_executeTokenTransfer(sellOrder.collection, sellOrder.trader, msg.sender,

sellOrder.tokenId);

Here is where the griefing vector comes into play. A malicious seller that just wants to grief buyers,

would just create orders and front-run buyers that want to buy their fantasy card and revoke

approval of their NFT through ExecutionDelegate.sol:

 function transferERC721Unsafe(
 address collection,
 address from,
 address to,
 uint256 tokenId
) external whenNotPaused approvedContract {
 require(revokedApproval[from] == false, "User has revoked ap
proval");
 IERC721(collection).transferFrom(from, to, tokenId);
 }

Therefore, the malicious seller would just call revokeApproval() front-running the

buy() call of the buyer from the Exchange.

0xWeiss 9

Recommendation

Re-engineer this mechanism to account for griefings, probably a system where you
can’t revoke after an order is live.

Resolution
Acknowledged

0xWeiss 10

[EXC-M3] Rarities can’t be granted on the smart

contract level, Possibly losing prestigious fantasy

cards while leveling up.

Severity Category Status

MEDIUM User Loss Acknowledged

Description

Currently, on the levelUp() function, users should upgrade their hero card to
the next level of rarity by burning a specified number of cards of
the same hero and rarity. The problem is that the levelUp() function does not

grant that functionality allowing for users that interact with the smart contracts
directly, not mint the correct rarity of card and lose their hero.

 function levelUp(uint256[] calldata tokenIds, address collection) p
ublic {
 require(tokenIds.length == cardsRequiredForLevelUp, "wrong am
ount of cards to level up");

 for (uint i = 0; i < cardsRequiredForLevelUp; i++) {
 require(
 IFantasyCards(collection).ownerOf(tokenIds[i]) == msg
.sender,
 "caller does not own one of the tokens"
);
 executionDelegate.burnFantasyCard(address(collection), to
kenIds[i]);
 }

 uint256 mintedTokenId = IFantasyCards(collection).tokenCounte
r();
 executionDelegate.mintFantasyCard(address(collection), msg.se
nder);
 emit LevelUp(tokenIds, mintedTokenId, collection, msg.sender)
;
 }

0xWeiss 11

Recommendation

Adopt rarities on the smart contract level so that it does not have to be handled on
the front-end.

Resolution

Acknowledged. This issue is fixed at the front-end where the team will make sure to
set the right metadata for specific leveled up cards, though on the contracts, there is
no way to handle the rarity functionality.

0xWeiss 12

[MINT-L1] setMaxPacksForMintConfig can be set

below the current minted packs

Severity Category Status

LOW Logical error Acknowledged

Description

On the setMaxPacksForMintConfig it allows the MASTER to set the max number

of packs that can be minted for that mintConfigId.

This can be called and updated anytime, and should follow the INVARIANT that specifies that

maxPacks that can be minted, has to be bigger or equal to the current amount of packs minted

totalMintedPacks:

config.maxPacks >= config.totalMintedPacks

 function setMaxPacksForMintConfig(uint256 mintConfigId, uint256 ma
xPacks) public onlyRole(MINT_CONFIG_MASTER) {
 require(mintConfigId < mintConfigIdCounter, "Invalid mintCon
figId");
 require(maxPacks > 0, "Maximum packs must be greater than 0"
);
 MintConfig storage config = mintConfigs[mintConfigId];
 config.maxPacks = maxPacks;

 emit MaxPacksUpdatedForMintConfig(mintConfigId, maxPacks);
 }

Though there is no check to prevent an incorrect state by setting maxPacks below

totalMintedPacks. # Recommendation

Add the following code:

+ if (maxPacks > config.totalMintedPacks){
+ config.maxPacks = config.totalMintedPacks;
+ }else{
+ config.maxPacks = maxPacks;
+ }
- config.maxPacks = maxPacks;

Resolution
Acknowledged

0xWeiss 13

[MINT-L2] getPackPrice() should revert if the

mintConfig has been canceled

Severity Category Status

LOW Logical error Acknowledged

Description

Currently, when calling getPackPrice() externally, you will receive incorrect

data/states from reality as you can get prices for canceled configIds:

Recommendation

Add a requirement so that if the configIds has been canceled, revert:

VRGDAConfig memory vrgdaConfig = mintConfig.vrgdaConfig;
require((block.timestamp - mintConfig.startTimestamp) >= 0, "INVALID_TIMES
TAMP");
+ require(!mintConfig.cancelled, "CANCELLED ID");

Resolution
Acknowledged

0xWeiss 14

[MINT-L3] getPackPrice() should revert if the

mintConfig has an expired timestamp

Severity Category Status

LOW Logical error Acknowledged

Description

Currently, when calling getPackPrice() externally, you will receive incorrect

data/states from reality as you can get prices for expired configIds.

Recommendation

Add a requirement so that if the configIds has been expired, revert:

VRGDAConfig memory vrgdaConfig = mintConfig.vrgdaConfig;
require((block.timestamp - mintConfig.startTimestamp) >= 0, "INVALID_TIMES
TAMP");
+ require(mintConfig.expirationTimestamp > block.timestamp, "INVALID_TIMES
TAMP");

Resolution
Acknowledged

0xWeiss 15

[MINT-L4] Lack of upper limit in cardsPerPack

could cause a DOS when minting

Severity Category Status

LOW DOS Acknowledged

Description

When calling mint() on the Minter contract, you are in fact buying one pack of cards

of whatever collection is specified in the configId you specified.

At the end of the function, you will start batch minting the cards until all the cards on the pack have

been minted:

 function _executeBatchMint(address collection, uint256 cardsPerP
ack, address buyer) internal {
 for (uint256 i = 0; i < cardsPerPack; i++) {
 executionDelegate.mintFantasyCard(collection, buyer);
 }
 }

If the amount of cards in the pack is high enough, the transaction will reach the gas
limit and revert, not allowing to mint the specified pack of fantasy cards.

Recommendation

Add an upper limit when setting cardsPerPack to a reasonable value, I estimate

around 50:

+ uint256 cardLimit;

 function setCardsPerPackForMintConfig(
 uint256 mintConfigId,
 uint256 cardsPerPack
) public onlyRole(MINT_CONFIG_MASTER) {
 require(mintConfigId < mintConfigIdCounter, "Invalid mintConfigId"
);
 require(cardsPerPack > 0, "Cards per pack must be greater than 0")
;
 MintConfig storage config = mintConfigs[mintConfigId];
+ require(cardsPerPack <= cardLimit, "too many cards per pack");
 config.cardsPerPack = cardsPerPack;
 emit CardsPerPackUpdatedForMintConfig(mintConfigId, cardsPerPack);
 }

0xWeiss 16

 function newMintConfig(
 address collection,
 uint256 cardsPerPack,
 uint256 maxPacks,
 address paymentToken,
 uint256 fixedPrice,
 uint256 maxPacksPerAddress,
 bool requiresWhitelist,
 bytes32 merkleRoot,
 uint256 startTimestamp,
 uint256 expirationTimestamp
) public onlyRole(MINT_CONFIG_MASTER) {
 require(collection != address(0), "Collection address cannot be 0x
0");
 require(cardsPerPack > 0, "Cards per pack must be greater than 0")
;
 require(maxPacks > 0, "Max packs must be greater than 0");
 require(startTimestamp >= block.timestamp, "Mint must start immedi
ately or in the future");
 require(expirationTimestamp == 0 || expirationTimestamp > startTim
estamp, "invalid expirationTimestamp");
+ require(cardsPerPack <= cardLimit, "too many cards per pack");

 if (requiresWhitelist) {
 require(merkleRoot != 0, "missing merkleRoot");
 }

 MintConfig storage config = mintConfigs[mintConfigIdCounter];
 config.collection = collection;
 config.cardsPerPack = cardsPerPack;

Resolution
Acknowledged

0xWeiss 17

[EXEC-L1] “Fake” volume and “fake” mintings can

happen

Severity Category Status

LOW Input Validation Resolved

Description

Functions like mintFantasyCard on ExecutionDelegate.sol allow the Minter

contract mint NFTs form a IFantasyCards contract, usually specified inside the

mintConfigs.collection parameter:

 function mintFantasyCard(address collection, address to) external w
henNotPaused approvedContract {
 IFantasyCards(collection).safeMint(to);
 }

Though, for functions like levelUp and burnToDraw(), the caller is allowed to to

specify whatever collection they want with no specific validation or whatsoever.

 function levelUp(uint256[] calldata tokenIds, address collection) p
ublic {
 require(tokenIds.length == cardsRequiredForLevelUp, "wrong a
mount of cards to level up");

 for (uint i = 0; i < cardsRequiredForLevelUp; i++) {
 require(
 IFantasyCards(collection).ownerOf(tokenIds[i]) == ms
g.sender,
 "caller does not own one of the tokens"
);
 executionDelegate.burnFantasyCard(address(collection), t
okenIds[i]);
 }

 uint256 mintedTokenId = IFantasyCards(collection).tokenCount
er();
 executionDelegate.mintFantasyCard(address(collection), msg.s
ender);
 emit LevelUp(tokenIds, mintedTokenId, collection, msg.sender
);
 }

allowing for phantom contracts with the IFantasyCards to be used as real Fantasy

Cards. Impact is not more than faking real volumen with fake Fantasy Card
collections and no funds will be lost.

0xWeiss 18

Recommendation

Add a whitelist system for all the collections that will be added to every
mintConfigs.collection , and check against this whitelist when calling

mintFantasyCard() and burnFantasyCard()

Resolution
Fixed

https://github.com/fantasy-top/fantasy-core-audit/pull/27

0xWeiss 19

[GLOBAL-L1] Un-used imports across the

codebase

Severity Category Status

LOW Un-used code Acknowledged

Description

Remove the following imports from their contracts as they are declared but not used.

• IFantasyCards.sol import: import
"@openzeppelin/contracts/interfaces/draft-IERC6093.sol"; is un-

used.

Resolution
Acknowledged

0xWeiss 20

DISCLAIMER

Most of the Acknowledged issues on this report are acknowledged because the

team had no time to fix given an extremely tight deadline for deployment. That

is also the reason why the review only was of 2 days of duration.

This report is not, nor should be considered, an “endorsement” or “disapproval”

of any particular project or team. This report is not, nor should be considered,

an indication of the economics or value of any “product” or “asset” created by

any team or project that contracts Marc Weiss to perform a security assessment.

This report does not provide any warranty or guarantee regarding the absolute

bug-free nature of the technology analyzed, nor do they provide any indication

of the technologies proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment

or involvement with any particular project. This report in no way provides

investment advice, nor should be leveraged as investment advice of any sort.

This report represents an extensive assessing process intending to help our

customers increase the quality of their code while reducing the high level of risk

presented by cryptographic tokens and blockchain technology. Blockchain

technology and cryptographic assets present a high level of ongoing risk.

My position is that each company and individual are responsible for their own

due diligence and continuous security. My goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and

consistently changing technologies, and in no way claims any guarantee of

security or functionality of the technology we agree to analyze. Therefore, I do

not guarantee the explicit security of the audited smart contract, regardless of

the verdict.

	[EXC-M1] Orders can be executed on expiration
	Description
	Recommendation
	Resolution
	[EXC-M2] Malicious seller can grief order executions
	Description (1)
	Recommendation (1)
	Resolution (1)
	[EXC-M3] Rarities can’t be granted on the smart contract level, Possibly losing prestigious fantasy cards while leveling up.
	Description (2)
	Recommendation (2)
	Resolution (2)
	[MINT-L1] setMaxPacksForMintConfig can be set below the current minted packs
	Description (3)
	Resolution (3)
	[MINT-L2] getPackPrice() should revert if the mintConfig has been canceled
	Description (4)
	Recommendation (3)
	Resolution (4)
	[MINT-L3] getPackPrice() should revert if the mintConfig has an expired timestamp
	Description (5)
	Recommendation (4)
	Resolution (5)
	[MINT-L4] Lack of upper limit in cardsPerPack could cause a DOS when minting
	Description (6)
	Recommendation (5)
	Resolution (6)
	[EXEC-L1] “Fake” volume and “fake” mintings can happen
	Description (7)
	Recommendation (6)
	Resolution (7)
	[GLOBAL-L1] Un-used imports across the codebase
	Description (8)
	Resolution (8)
	DISCLAIMER

